Algoritma minimax dimana arti dari algoritma minimax itu sendiri adalah merupakan basis dari semua permainan berbasis AI seperti permainan catur misalnya. AI permainan catur tentunya sudah sangat terkenal dimana AI tersebut bahkan dapat mengalahkan juara dunia sekalipun. Pada algoritma minimax, pengecekan akan seluruh kemungkinan yang ada sampai akhir permainan dilakukan. Pengecekan tersebut akan menghasilkan pohon permainan yang berisi semua kemungkinan tersebut. Tentunya dibutuhkan resource yang berskala besar untuk menangani komputasi pencarian pohon solusi tersebut berhubung kombinasi kemungkinan untuk sebuah permainan catur pada setiap geraknya sangat banyak sekali.
Berbeda dengan permainan catur, permainan tic-tac-toe ini mempunyai lebih sedikit kemungkinan solusi, sehingga kita akan mempunyai cukup komputasi untuk memainkan setiap kombinasi langkah dari setiap posisi dan kondisi. Namun hal ini dapat dihindari dengan membatasi sejauh mana komputer akan menganalisis hasil dari langkahlangkah yang mungkin (menentukan kedalaman pohon). Tetapi dengan hal ini, kita harus menambah kedalaman pohon tersebut setiap langkahnya agar kedalaman pohon pada state tersebut sama dengan state sebelumnya.
Algoritma minimax ini bekerja secara rekursif dengan mencari langkah yang akan membuat lawan mengalami kerugian minimum. Semua strategi lawan akan dihitung dengan algoritma yang sama dan seterusnya. Ini berarti, pada langkah pertama komputer akan menganalisis seluruh pohon permainan. Dan untuk setiap langkahnya, komputer akan memilih langkah yang paling membuat lawan mendapatkan keuntungan minimum, dan yang paling membuat komputer itu sendiri mendapatkan keuntungan maksimum.
Dalam penentuan keputusan tersebut dibutuhkan suatu nilai yang merepresentasikan kerugian atau keuntungan yang akan diperoleh jika langkah tersebut dipilih. Untuk itulah disini digunakan sebuah fungsi heurisitic untuk mengevaluasi nilai sebagai nilai yang merepresentasikan hasil permainan yang akan terjadi jika langkah tersebut dipilih. Biasanya pada permainan tic-tac-toe ini digunakan nilai 1,0,-1 untuk mewakilkan hasil akhir permainan berupa menang, seri, dan kalah. Dari nilai-nilai heuristic inilah komputer akan menentukan simpul mana dari pohon permainan yang akan dipilih, tentunya simpul yang akan dipilih tersebut adalah simpul dengan nilai heuristic yang akan menuntun permainan ke hasil akhir yang menguntungkan bagi komputer.
Pemakaian algoritma umum diatas untuk permainan tic-tac-toe adalah sebagai berikut :
Dilihat dari algoritma diatas, nilai heuristic yang dibangkitkan akan sangat mempengaruhi analisis dari AI tersebut. Oleh karena itu, semakin bagus fungsi heuristic maka semakin bagus pula analisis AI tersebut, dan semakin sulit pula AI untuk dikalahkan.
0 komentar:
Posting Komentar